in hexane and 0.53 mL of dicyclohexylamine) under an argon atmosphere was added dropwise a solution of $0.4 \mathrm{~g}(1.27 \mathrm{mmol})$ of $(S) \cdot(+) .7 \mathrm{in} 2.5 \mathrm{~mL}$ of THF. The mixture was stirred at -100 ${ }^{\circ} \mathrm{C}$ for 10 min and quenched with a cooled solution of 10% aqueous $\mathrm{HCl}(5 \mathrm{~mL}) . \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added, the mixture warmed to room temperaure, and the organic layer separated, washed with brine (5 mL), and extracted with $10 \% \mathrm{NaHCO}_{3}$ solution (2×5 mL). The aqueous extract was acidified (cold 10% aqueous HCl) and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The $\mathrm{Et}_{2} \mathrm{O}$ layer was washed with brine $(2 \times 4 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Recrystallization of the residue from hexane $/ \mathrm{Et}_{2} \mathrm{O}$ afforded 0.11 $\mathrm{g}(30 \%)$ of colorless prisms, $\mathrm{mp} 124-125^{\circ} \mathrm{C} .9:[\alpha]^{22}{ }_{\mathrm{D}}+39.7^{\circ}$ (c $1.00, \mathrm{MeOH}$); IR $\nu_{\text {max }}{ }^{\text {neat }} 2920,2680,1735,1650,1390,1340,1140 ;$ ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 5.14(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 5.18$ (d, $1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.43(\mathrm{~m}$, 8 H). Anal. Caled for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$: C, $72.33 ; \mathrm{H}, 5.00$. Found: C, 72.54; H, 5.08.
(S)-(+)-3,4-Dihydroxy-5-phenyl-2(5H)-furanone (3). To a solution of $(S)-(+)-9(0.04 \mathrm{~g}, 0.14 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL})$ were added $10 \% \mathrm{Pd} / \mathrm{C}(0.04 \mathrm{~g})$ and cyclohexene ($0.36 \mathrm{~mL}, 3.56 \mathrm{mmol}$). The mixture was refluxed for 1 h under argon, filtered, and concentrated in vacuo. Recrystallization of the residue from acetone/hexane afforded $0.01 \mathrm{~g}(40 \%)$ of colorless needles, mp $142-143^{\circ} \mathrm{C}$ (lit. ${ }^{23} \mathrm{mp}$ for racemic $3150.5-152^{\circ} \mathrm{C}$ dec) $3:[\alpha]^{22} \mathrm{D}$ $+109.4^{\circ}(c 0.80, \mathrm{MeOH})$; IR $v_{\max }{ }^{\text {neat }} 3300,1740,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+d_{6}\right.$-DMSO, 250 MHz) $\delta 4.98(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.41(\mathrm{~m}, 5$ H). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4}: \mathrm{C}, 62.50 ; \mathrm{H}, 4.20$. Found: C, 62.69; H, 4.25 .

Acknowledgment. We are grateful to the U.S. Public Health Service National Heart, Lung and Blood Institute for support of this work through grant no. R01 HL-12740.

Registry No. (\pm)-1, 124400-07-3; (S)-2, 119006-88-1; (S)-3, 124400-08-4; (S)-4, 687-47-8; (S)-5, 124400-09-5; (S)-6, 21210-43-5; (S)-7, 124400-10-8; (S)-8, 124400-11-9; (S)-8.(S)-PhCH $\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$, 124400-13-1; (S)-9, 124400-12-0; $\mathrm{PhCH}_{2} \mathrm{OCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Cl}, 19810-31-2$.
(23) Dahn, H.; Lawendel, J. S. Helv. Chim. Acta 1954, 37, 1318-1327.
(24) Evans, D. A.; Morrissey, M. M.; Dorow, R. L. J. Am. Chem. Soc. 1985, 107, 4346-4348.
(25) Logemann, W. Hoppe-Seylers Z. Physiol. Chem. 1952, 290, 61-66.
(26) Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141-6144.
(27) Removal of the chiral auxilliary with $\mathrm{Mg}\left(\mathrm{OCH}_{3}\right)_{2}{ }^{24}(0.02 \mathrm{M} ; 1.1$ equiv) at $-15^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$ followed by deprotection via transfer hydrogenation yielded partially racemized α-hydroxy ester [$\left(35 \%\right.$ ee, $[\alpha]^{22}$ D $+49.1^{\circ}$ (c $\left.\left.1.00, \mathrm{MeOH}\right)\right]$ in 61% overall yield from the oxazolidinone carboximide.
(28) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543-2549.
(29) The racemic methyl α-hydroxyacetate, mp $104-105^{\circ} \mathrm{C}$, was prepared by $\mathrm{CH}_{2} \mathrm{~N}_{2}$ esterification of the racemic acid, which was synthesized as follows: in situ cyanosilylation ${ }^{30}\left[\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{KCN}, \mathrm{Zn}(\mathrm{CN})_{2}\right]$ of 4 -biphenylcarboxaldehyde furnished trimethylsilyl cyanohydrin ether, which was hydrolyzed with HCl^{31} to the hydroxy amide ($\mathrm{mp} 226-227^{\circ} \mathrm{C}$) and finally to racemic α-hydroxy acid (mp 201-202 ${ }^{\circ} \mathrm{C}$, lit. ${ }^{32} \mathrm{mp} 201-203^{\circ} \mathrm{C}$) with $\mathrm{KOH} / \mathrm{MeOH}$ in 56% overall yield.
(30) Rasmussen, J. K.; Heilmann, S. M. Org. Synth. 1984, 62, 196-201.
(31) Grunewald, G. L.; Brouillette, W. J.; Finney, J. A. Tetrahedron Lett. 1980, 21, 1219-1220.
(32) Blicke, F. F.; Grier, N. J. Am. Chem. Soc. 1943, 65, 1725-1728.

New Stereoselective Propanal/Propanoic Acid Synthons for Aldol Reactions ${ }^{1}$

Ichiro Mori, Kazuaki Ishihara, and Clayton H. Heathcock*
Department of Chemistry, University of California, Berkeley, California 94720

$$
\text { Received August 1, } 1989
$$

It has been well established that reactions of performed main-group metal enolates with aldehydes show a corre-

[^0]
Scheme I

lation between enolate geometry and aldol relative configuration if the nonreacting carbonyl ligand is sterically bulky. ${ }^{2}$ For example, 2,2-dimethyl-3-pentanone undergoes deprotonation to give a Z enolate, which reacts with aldehydes to given syn aldols of high stereochemical purity (eq 1). ${ }^{3}$ Conversely, the trimethylsilyl enol ethers of such ketones undergo anti-selective Lewis acid mediated aldol reactions (eq 2). ${ }^{4}$

To capitalize on this high aldol stereoeselectivy, we developed aldol reagent 3. 3,5,6 Like 2,2-dimethyl-3-pentanone, ketone 3 gives a Z enolate that reacts with a variety of aldehydes to give syn aldols that can be cleaved by periodic acid to give β-hydroxy acids, ${ }^{7}$ reduced and then cleaved by periodate to give β-hydroxy aldehydes, ${ }^{8}$ or treated sequentially with an alkyllithium reagent and periodate to provide β-hydroxy ketones (Scheme I). ${ }^{9}$
Reagent 3 and its relatives have been employed in several syntheses as syn-selective propanal or propanoic acid synthons. ${ }^{10}$ A structurally related synthon, ethyl trityl

[^1]
ketone, also undergoes highly syn-selective aldol reactions; the resulting trityl aldols may be reductively cleaved wtih lithium triethylborohydride, after protection of the secondary alcohol. ${ }^{11}$

In spite of its utility, however, ketone 3 has limitations. A case in point is in Lewis acid mediated additions of its (Z)-trimethylsilyl enol ether to aldehydes. Although this reagent is highly anti-selective with sample aldehydes, it is less selective with α-alkoxy aldehydes, perhaps because of unwanted coordination of the Lewis acid by the α (trimethylsilyl)oxy group. ${ }^{12}$ To remedy this deficiency, we have developed another 2,2-dimethyl-3-pentanone analogue that has all of the desirable properties of 3 , without the undesirable feature of a (trialkylsilyl)oxy group. The new reagent, ketone 6 , is simply prepared as shown in Scheme II by reaction of the Grignard reagent derived from prenyl chloride ${ }^{13}$ with propanoyl chloride; ketone 6 is obtained in 77% yield. ${ }^{14}$ Treatment of the derived lithium enolate with trimethylsilyl chloride affords the trimethylsilyl enol ether 7 in 75% yield.

The reactions summarized in eq 3 and 4 were carried out to assess the simple diastereoselectivity of reagents 6 and 7. As expected, reaction of the lithium enolate with benzaldehyde affords syn aldol 8 , whereas the TiCl_{4}-mediated reaction of 7 with the same aldehyde provides the anti aldol 9. Both aldols are obtained in a diastereomeric purity of $>97: 3$ (high-field ${ }^{1} \mathrm{H}$ NMR).

8

2-Phenylpropanal was used to examine the stereoselectivity of the aldol reactions of reagents 6 and 7 with a typical chiral aldehyde. The reaction of the lithium enolate of 6 with 2-phenylpropanal gives only the two syn aldols, and a rather high Cram/anti-Cram ratio of $92: 8$ is observed (eq 5). In the TiCl_{4}-mediated reaction of 7 with the same aldehyde (eq 6), the Cram/anti-Cram ratio is $>97: 3,{ }^{15}$ but

[^2]the simple diastereoselectivity is unusually low; aldols 12 and 10 are produced in a ratio of 3.5:1.

Because it has been found that diastereofacial selectivity in additions to α-chiral thionium ions is enhanced when the sulfur substituent is more bulky, ${ }^{16}$ we investigated the Lewis acid mediated nucleophilic substitution reactions of the pinacol acetal (13) of 2-phenyl-2-propanal. As shown in Scheme III, TiCl_{4}-mediated reaction of 13 with reagent 7 provides a 95:5 mixture of 14 and 15 if the reaction is carried out and quenched at $-78^{\circ} \mathrm{C}$. To our pleasant surpise, we discover that aldols 12 and 10 are produced in 96% yield in a ratio of $94: 6$ if the aldol reaction mixture is warmed for $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ prior to the aqueous quench. The loss of the pinacol group presumably occurs by TiCl_{4}-promoted pinacol rearrangement of the intermediate ethers. Use of the pinacol ether is essential to obtain high diastereofacial selectivity; when the dimethyl acetal corresponding to 13 is used in this reaction, three β-methoxy ketones are obtained in a ratio of $5: 4: 1$.

Finally, we have demonstrated the conversion of the new aldols to more useful β-hydroxy carbonyl compounds as shown in Scheme IV. Reduction of a 24:1 mixture of aldols 12 and 10 with lithium aluminum hydride provides a mixture of diols that is oxidized with lead tetraacetate to a mixture of β-hydroxy aldehydes. ${ }^{17}$ Reduction of the latter mixture provides a mixture of diols 16 (57%) and $17(5 \%)$. The transformation depicted in Scheme IX is impressively chemoselective, considering the fact that one of the secondary hydroxy groups is homoallylic and the other is homobenzylic. Other examples of the $\mathrm{Pb}-$ $(\mathrm{OAc})_{4}$-mediated conversion of such homoallylic alcohols to aldehydes will be reported in connection with a paper

[^3]

Scheme IV

16

17
detailing the use of 7 for an iterative thionium ion extension process. ${ }^{18}$

In conclusion, we have developed short, convenient syntheses of ketone 6 and the derived trimethylsilyl enol ether 7, which may be used for stereoselective formation of syn and anti β-hydroxy carbonyl compounds. The obvious limitation of the new reagents is that other groups that react with lithium aluminum hydride or lead tetraacetate could provide avenues for side reactions.

Experimental Section

General. Unless otherwise noted, materials were obtained from commercial sources and used without further purification. All reactions were performed under a dry N_{2} atmosphere. Tetrahydrofuran (THF), diethyl ether, and benzene were distilled from sodium/benzophenone ketyl immediately prior to use. Dichloromethane was distilled from calcium hydride. Chromatography was performed with silica gel 60 (E. Merk, Darmstadt), 100-120 mesh, with the indicated solvents. Analytical thin-layer chromatography was performed on precoated glass plates (250 m, silica gel 60, E. Merk, Darmstadt). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured in CDCl_{3} solution. J values are in hertz.

4,4-Dimethyl-5-hexen-3-one (6). ${ }^{14}$ In a $500-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a thermometer, a reflux condenser, and a magnetic stirring bar were placed magnesium turnings ($21.6 \mathrm{~g}, 0.9 \mathrm{~mol}$) and 100 mL of THF under N_{2}. A small piece of iodine and ca. 0.2 mL of prenyl chloride ${ }^{13}$ were added at $25^{\circ} \mathrm{C}$. After 10 min , the disappearance of iodine color indicated the initiation of the reaction. The reaction mixture was cooled

[^4] ration.

12
10
to -10 to $-15^{\circ} \mathrm{C}$ and then was diluted with 60 mL of THF. A solution of prenyl chloride ($31.5 \mathrm{~g}, 0.3 \mathrm{~mol}$) in 200 mL of THF was added dropwise over a period of 3 h with vigorous stirring. The reaction mixture was allowed to warm to room temperature and was stirred for 30 min . The solution of the Grignard reagent was transferred dropwise over a period of 1 h at $-78^{\circ} \mathrm{C}$, via cannula, into a $1000-\mathrm{mL}$ flask containing $52.5 \mathrm{~mL}(0.6 \mathrm{~mol})$ of propanoyl chloride in 200 mL of THF. The resulting mixture was allowed to warm to room temperature, stirred for 2 h , and poured into 1 L of water. The organic layer was removed and the aqueous layer was extracted with two $100-\mathrm{mL}$ portions of ether. The combined organic layers were washed with 1 L of 2 M NaOH and 500 mL of brine. After drying, the solvent was removed by distillation through a $10-\mathrm{in}$. Vigreux column at atmospheric pressure. The residual oil was distilled at reduced pressure to give 29.0 g (77% yield) of ketone 6 as a colorless oil, bp 72-74 ${ }^{\circ} \mathrm{C} / 40$ Torr. IR (film): $3100,2980,1720,1630,1460,1100,980$, $920 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 5.93$ (dd, $1, J=10.5,17.4$), 5.14 (dd, 1, $J=17.4,0.7$), 5.13 (d, $1, J=10.5,0.7$), $2.49(\mathrm{q}, 2, J=7.2$), 1.23 ($\mathrm{s}, 6$), $1.00\left(\mathrm{t}, 3, J=7.2\right.$). ${ }^{13} \mathrm{C}$ NMR (50.78 MHz): $\delta 213.6$, 142.6, 113.8, 50.6, 30.4, 23.5, 8.1. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 76.14$; H, 11.18. Found: C, 75.95 ; H, 11.27.
(Z)-3,3-Dimethyl-4-[(trimethylsilyl)oxy]-1,4-hexadiene (7). To a solution of diisopropylamine ($15.4 \mathrm{~mL}, 110 \mathrm{mmol}$) in 200 mL of THF was added 53 mL of $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}(105 \mathrm{mmol}, 1.98 \mathrm{M}$ in hexane) in 10 min at $0^{\circ} \mathrm{C}$. After being stirred for 15 min , the solution was cooled to $-78^{\circ} \mathrm{C}$ and $12.6 \mathrm{~g}(100 \mathrm{mmol})$ of ketone 6 was added over a period of 10 min . After being stirred for 1.5 $\mathrm{h},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}(13.9 \mathrm{~mL}, 110 \mathrm{mmol})$ was added at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred overnight. The reaction mixture was poured into 400 mL of pH 7 phosphate buffer and extracted with three $50-\mathrm{mL}$ portions of pentane. The combined organic layers were washed with two $200-\mathrm{mL}$ portions of the phosphate buffer, dried over MgSO_{4}, concentrated with a rotary evaporator, and distilled to give 17.8 g (90% yield) of ether 7 , bp $103-106^{\circ} \mathrm{C} / 45$ Torr. IR (film): $3090,2960,1660,1640,1250$, $1140,1080,900,905,845 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 5.87$ (dd, $1, J=10.6,17.5$), 5.05 (dd, $1, J=17.5,1.3$), 4.98 (dd, $1, J=10.6$, 1.3), $4.64(\mathrm{q}, 1, J=6.7), 1.52(\mathrm{~d}, 3, J=6.7), 1.13(\mathrm{~s}, 6), 0.21(\mathrm{~s}$, 9). ${ }^{13} \mathrm{C}$ NMR (50.78 MHz): $\delta 157.1,146.3,111.2,99.4,42.6,25.5$, 11.7, 1.1. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{OSi}$: $\mathrm{C}, 66.60 ; \mathrm{H}, 11.80$. Found: C, 66.64; H, 11.54.
($1 S^{*}, 2 S^{*}$)-1-Hydroxy-2,4,4-trimethyl-1-phenylhex-5-en-3one (8). To a stirring solution of $1.55 \mathrm{~mL}(11 \mathrm{~mol})$ of diisopropylamine in 35 mL of THF was added 5.5 mL (11 mmol) of a 2 M solution of $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}$ in hexane at $0^{\circ} \mathrm{C}$. After 15 min , the solution was cooled to $-78^{\circ} \mathrm{C}$ and $1.26 \mathrm{~g}(10 \mathrm{mmol})$ of ketone 6 was added over 5 min . After being stirred for $30 \mathrm{~min}, 1.06 \mathrm{~g}$ (10 mmol) of benzaldehyde was added dropwise, and the solution was stirred for 30 min . The reaction was quenched with 50 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with three $20-\mathrm{mL}$ portions of ether. The combined ether layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give $2.21 \mathrm{~g}(95 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 7.28(\mathrm{~m}, 5), 5.76$ (dd, $1, J=10.5,17.5$), 5.18 (dd, $1, J=17.5,<1.0$), 5.16 (dd, $1, J=10.5,<1.0$), 4.84 (d,
$1, J=4.2$), 3.48 (br s, 1), 3.20 (dq, $1, J=4.2,6.9$), 1.17 ($\mathrm{s}, 3$), 1.08 $(\mathrm{s}, 3), 1.02(\mathrm{~d}, 3, J=6.9) .{ }^{13} \mathrm{C} \mathrm{NMR}(50.78 \mathrm{MHz}): \delta 217.4,141.1$, $140.4,127.4,126.6,125.4,114.6,51.0,46.4,22.2,22.0,11.6$.
($1 S^{*}, 2 R^{*}$)-1-Hydroxy-2,4,4-trimethyl-1-phenylhex-5-en-3one (9). To a mixture of $106 \mathrm{mg}(1.0 \mathrm{mmol})$ of benzaldehyde and $291 \mathrm{mg}(1.5 \mathrm{mmol})$ of ether 7 in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ was added dropwise $0.11 \mathrm{~mL}(1.0 \mathrm{mmol})$ of TiCl_{4}. After 30 min the reaction mixture was poured into 20 mL of 1 N HCl , the organic layer was separated, and the aqueous layer was washed with two $10-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with 20 mL of brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give an oil. This crude product was chromatographed on silica gel, using 5:1 hexane/ethyl acetate as eluant, to obtain 136 mg (63%) of aldol 9 as a colorless oil. IR (film): $3500,2980,1710$, $1635,1500,1015,995,925,775,710 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 7.28(\mathrm{~m}, 5), 5.80(\mathrm{dd}, 1, J=17.4,0.8), 5.14(\mathrm{dd}, 1, J=10.6,0.8)$, $5.11(\mathrm{dd}, 1, J=10.6,0.8), 4.71(\mathrm{~d}, 1, J=7.4), 3.27(\mathrm{dq}, 1,7.4,7.0)$, $3.05(\mathrm{br} \mathrm{s}, 1), 1.16(\mathrm{~s}, 3), 0.94(\mathrm{~d}, 3, J=7.0) .{ }^{13} \mathrm{C} \mathrm{NMR}(50.78 \mathrm{MHz})$: $\delta 217.7,142.8,141.6,128.2,127.6,126.4,114.4,72.2,51.5,47.5,22.9$, 22.8, 16.6. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 77.55 ; \mathrm{H}, 8.68$. Found: C, 77.17; H, 8.66.

Reaction of the Lithium Enolate of Ketone 6 with 2Phenylpropanal. A solution of LDA, prepared from 0.24 mL (1.70 mmol) of diisopropylamine and 0.62 mL of a 2.42 M solution of $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}(1.50 \mathrm{mmol})$ in hexane, in 10 mL of THF was cooled to $-78^{\circ} \mathrm{C}$ and $189 \mathrm{mg}(1.5 \mathrm{mmol})$ of ketone 6 was slowly added. After stirring for 30 min at $-78^{\circ} \mathrm{C}, 0.134 \mathrm{~g}(1.0 \mathrm{mmol})$ of 2 phenylpropanal was added. After 15 min at $-78^{\circ} \mathrm{C}$, water was added and the solution was worked up in the usual manner to provide $249 \mathrm{mg}(95 \%)$ of a $92: 8$ mixture of aldols 10 and 11 , as shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The pure aldols were isolated by gravity chromatography on silica gel.
($2 R^{*}, 3 S^{*}, 4 R^{*}$)-3-Hydroxy-4,6,6-trimethyl-2-phenyloct-7-en-5-one (10). TLC: $R_{f}=0.44$ (5.1 hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 5.61$ (dd, $1, J=10.5,17.3$), 5.01 (d, $1, J=$ $10.5), 4.89(\mathrm{~d}, 1, J=17.3), 3.69(\mathrm{dd}, 1, J=0.8,9.8), 3.50(\mathrm{~d}, 1$, $J=0.8$), 2.68-2.84 (m, 2), $1.36(\mathrm{~d}, 3, J=6.8), 1.06(\mathrm{~s}, 3), 1.03(\mathrm{~s}$, $3), 1.00(\mathrm{~d}, 3, J=7.0)$. ${ }^{13} \mathrm{C}$ NMR (50.78 MH): $\delta 219.1,143.9,140.5$, $128.3,127.3,126.4,115.2,75.7,51.3,42.8,40.1,22.5,18.7,10.1$.
($2 R^{*}, 3 R^{*}, 4 S^{*}$)-3-Hydroxy-4,6,6-trimethyl-2-phenyloct-7-en-5-one (11). TLC: $R_{f}=0.38$ (5.1 hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 7.21-7.34(\mathrm{~m}, 5), 5.93(\mathrm{dd}, 1, J=10.0,17.8)$, 5.26 (d, $1, J=10.5$), 5.25 (d, $1, J=17.0$), 3.77 (d, $1, J=9.0$), 3.31 (dq, $1, J=1.8,7.3$), $3.25(\mathrm{~s}, 1), 2.76-2.83(\mathrm{~m}, 1), 1.28(\mathrm{~s}, 3), 1.25$ (s, 3), 1.19 (d, $3, J=7.3$), 1.09 (d, $3, J=7.0$).
$\mathbf{T i C l} 4$-Promoted Reaction of Ether 7 with 2-Phenylpropanal. To a mixture of $0.134 \mathrm{~g}(1.0 \mathrm{mmol})$ of 2-phenylpropanal and $0.238 \mathrm{~g}(1.2 \mathrm{mmol})$ of ether 7 in 11 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.13 \mathrm{~mL}(1.2 \mathrm{mmol})$ of TiCl_{4} slowly at $-78^{\circ} \mathrm{C}$. After being stirred for 15 min , the bright yellow reaction mixture was quenched at $-78^{\circ} \mathrm{C}$ by rapid addition of 10 mL of saturated NaHCO_{3}. The mixture was extracted with two $50-\mathrm{mL}$ portions of ether and the combined ether layers were dried and concentrated to obtain 251 $\mathrm{mg}(96 \%)$ of a $78: 22$ mixture of aldols 12 and 10 , as judged from the ${ }^{1} \mathrm{H}$ NMR spectrum. The pure aldols were obtained by chromatography on silica gel.
($2 R^{*}, 3 S^{*}, 4 S^{*}$)-3-Hydroxy-4,6,6-trimethyl-2-phenyloct-7-en-5-one (12). TLC: $R_{f}=0.38$ (5.1 hexane/ethyl acetate). IR (film): $3520,2950,1710,1460,1000,715 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}): \delta 7.16-7.34(\mathrm{~m}, 5), 5.88$ (dd, $1, J=10.5,17.5$), 5.12 (d, 1 , $J=16.5$), $5.11(\mathrm{~d}, 1, J=11.5), 3.75$ (dd, $1, J=6.8,12.3), 3.00-3.14$ $\mathrm{nm}, 1), 2.79-2.93(\mathrm{~m}, 1), 2.38(\mathrm{~d}, 1, J=6.8), 1.30(\mathrm{~d}, 3, J=7.0)$, $1.19(\mathrm{~s}, 3), 1.17(\mathrm{~s}, 3), 1.10(\mathrm{~d}, 3, J=7.0) .{ }^{13} \mathrm{C}$ NMR (50.78 MHz): $\delta 218.2,144.5,128.3,127.6,126.2,113.9,51.1,42.9,23.5,16.0,14.5$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C}, 78.40 ; \mathrm{H}, 9.31$. Found: $\mathrm{C}, 78.12$; H, 8.99 .
$\left(2 R^{*}, 3 S^{*}, 4 R^{*}\right)$-3-Hydroxy-4,6,6-trimethyl-2-phenyloct-7-en-5-one (10). TLC: $R_{f}=0.44$ (5.1 hexane/ethyl acetate). This material was identical by ${ }^{1} \mathrm{H}$ NMR with the sample obtained as the major product in the foregoing lithium enolate reaction.

2-(1-Phenylethyl)-4,4,5,5-tetramethyl-1,3-dioxolane (13). A mixture of $0.670 \mathrm{~g}(5.0 \mathrm{mmol})$ of 2-phenylpropanal and 0.590 $\mathrm{g}(5 \mathrm{mmol})$ of pinacol in 25 mL of benzene was heated under reflux while water was continuously removed with a Dean-Stark trap. After 1 h the solution was cooled to room temperature and 0.2 g of NaHCO_{3} was added. The solvent was removed under vacuum
and the residue purified by flash chromatography ${ }^{19}$ on silica gel, eluting with $20: 1$ hexane/ethyl acetate, to obtain $1.02 \mathrm{~g}(87 \%)$ of the pure acetal. IR (film): 2980, 1605, 1500, 1450, 1370, 1100, $980,770,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 7.27(\mathrm{~m}, 5), 5.08(\mathrm{~d}$, $1, J=5.4), 2.87(\mathrm{dq}, 1, J=5.4,7.2), 1.32(\mathrm{~d}, 3, J=7.2), 1.18(\mathrm{~s}$, 3), $1.14(\mathrm{~s}, 3), 1.08(\mathrm{~s}, 6) .{ }^{13} \mathrm{C}$ NMR (50.78 MHz): $\delta 142.4,128.5$, $127.9,126.4,103.6,81.7,81.6,45.1,24.11,24.06,22.2,22.1,16.2$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$: $\mathrm{C}, 76.88$; $\mathrm{H}, 9.46$. Found: $\mathrm{C}, 77.04$; H, 9.34.
TiCl_{4}-Promoted Reaction of Acetal 13 with 2-Phenylpropanal. To a stirring solution of $0.234 \mathrm{~g}(1.0 \mathrm{mmol})$ of acetal 13 and $0.238 \mathrm{~g}(1.2 \mathrm{mmol})$ of ether 7 in 11 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise $0.13 \mathrm{~mL}(1.2 \mathrm{mmol})$ of TiCl_{4} at $-78^{\circ} \mathrm{C}$. After 15 min , the mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred 30 min , and the bright yellow mixture was quenched by rapid addition of 10 mL of saturated NaHCO_{3} at $0^{\circ} \mathrm{C}$. The mixture was extracted with two $50-\mathrm{mL}$ portions of ether. The combined organic layers were dried and concentrated to obtain $251 \mathrm{mg}(96 \%$) of a $94: 6$ mixture of aldols 12 and 10 , as judged by ${ }^{1} \mathrm{H}$ NMR. The pure aldols were obtained by chromatography on silica gel.

Conversion of Aldols 12 and 10 to Diols 16 and 17. To a solution of 260 mg (1.0 mmol) of a $94: 6$ mixture of aldols 12 and 10 in 10 mL of ether was added $38 \mathrm{mg}(1.0 \mathrm{mmol})$ of LiAlH_{4} at $0^{\circ} \mathrm{C}$. The solution was stirred for 5 min and allowed to warm to room temperature. After 30 min , the mixture was quenched at $0^{\circ} \mathrm{C}$ by the slow addition of 10 mL of 1 N HCl . The mixture was extracted with two $20-\mathrm{mL}$ portions of ether, and the combined ether layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to obtain 253 $\mathrm{mg}(96 \%)$ of a diastereomeric mixture of diols. To a solution of this material in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $443 \mathrm{mg}(1.0 \mathrm{mmol})$ of $\mathrm{Pb}(\mathrm{OAc})_{4}$ at $-78^{\circ} \mathrm{C}$ under N_{2}. The mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ and allowed to warm to room temperature. After 1.5 h , ca. 0.5 g of silica gel was added (for filtration aid), the mixture was filtered, and the filtrate was concentrated to obtain a diastereomeric mixture of β-hydroxy aldehydes as an oil. This crude material was dissolved in 10 mL of ether and 38 mg (1.0 mmol) of LiAlH_{4} was added at $0^{\circ} \mathrm{C}$. The solution was stirred for 5 min and allowed to warm to room temperature. After 30 \min the mixture was quenched at $0^{\circ} \mathrm{C}$ by the slow addition of 10 mL of 1 N HCl . The resulting mixture was extracted with two $20-\mathrm{mL}$ portions of ether and the combined organic layers were dried and concentrated to obtain a solid. Flash chromatography on silica gel, using $5: 2$ hexane/ethyl acetate as eluent, gave 111 $\mathrm{mg}(57 \%)$ of diol $16, \mathrm{mg} 54-55^{\circ} \mathrm{C}$, and $10 \mathrm{mg}(5 \%)$ of diol 17 , oil.
($2 R^{*}, 3 S^{*}, 4 R^{*}$)-2-Methyl-4-phenylpentane-1,3-diol (16). TLC: $R_{f}=0.14$ ($2: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 7.21-7.32(\mathrm{~m}, 5), 3.73-3.77(\mathrm{~m}, 1), 3.56-3.61(\mathrm{~m}, 2), 3.12$ (br s, 1), 3.01 (dq, $1, J=4.6,7.0$), 2.47 (br s, 1), $1.71-1.88(\mathrm{~m}, 1), 1.31$ (d, $3, J=7.0$), 0.96 (d, $3, J=7.0$).
($2 R^{*}, 3 S^{*}, 4 S^{*}$)-2-Methyl-4-phenylpentane-1,3-diol (17). TLC: $R_{f}=0.09$ ($2: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 7.16-7.30(\mathrm{~m}, 5), 3.96$ (dd, $1, J=1.9,9.6), 3.57-3.70(\mathrm{~m}, 2), 2.82$ (dq, $1, J=9.8,6.8$), $2.48(\mathrm{br} \mathrm{s}, 1), 1.65(\mathrm{br} \mathrm{s}, 1), 1.35^{-1.50(\mathrm{~m}, 1)}$), $1.37(\mathrm{~d}, 3, J=6.8), 0.94(\mathrm{~d}, 3, J=7.0)$.

The spectral data for these two diols are in agreement with data reported by Matsumoto and co-workers ${ }^{20}$ and were found to be identical with the spectra of samples previously prepared in this laboratory. ${ }^{21}$

Acknowledgment. This research was supported by a grant from the National Institutes of Health (AI 15027).

Registry No. 4, 503-60-6; 5, 2190-48-9; 6, 78186-80-8; (Z)-7, 124400-14-2; 8, 124400-15-3; 9, 124400-16-4; 10, 124400-17-5; 11, 124509-16-6; 12, 124509-17-7; 13, 124400-18-6; 14, 124400-19-7; 15, 124508-29-8; 16, 124508-30-1; 17, 124508-31-2; $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Cl}$, $79-03-8 ; \mathrm{CH}_{3} \mathrm{CH}(\mathrm{Ph}) \mathrm{CHO}, 93-53-8 ; \mathrm{PhCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}-$ $\left(\mathrm{CH}_{3}\right) \mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}=\mathrm{CH}_{2}, 124400-20-0 ; \mathrm{PhCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}-$ $(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}$ (stereoisomer 1), 124400-21-1; $\mathrm{PhCH}\left(\mathrm{CH}_{3}\right)$ $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}$ (stereoisomer 2), 124508-32-3; pinacol, 76-09-5.

[^5]
[^0]: (1) Paper 50 in the series Acyclic Stereoselection. For paper 49, see: Montgomery, S. H.; Pirrung, M. C.; Heathcock, C. H. Carbohyd. Res., in press.

[^1]: (2) (a) Kleschick, W. A.; Buse, C. T.; Heathcock, C. H. J. Am. Chem. Soc. 1977, 99, 247. (b) Heathcock, C. H. In Asymmetric Synthesis, Volume 3; Morrison, J. D., Ed.; Academic Press: New York, 1984; p 111, and references contained therein.
 (3) Heathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.; Sohn J. E.; Lampe, J. J. Org. Chem. 1980, 45, 1066.
 (4) Heathcock, C. H.; Hug, K. T.; Flippin, L. A. Tetrahedron Lett. 1984, 25, 5793.
 (5) Buse, C. T.; Heathcock, C. H. J. Am. Chem. Soc. 1977, 99, 2337.
 (6) Buse, C. T. Ph.D. Dissertation, University of California, Berkeley, 1978.
 (7) (a) Young, S. D.; Buse, C. T.; Heathcock, C. H. Org. Synth. 1985, 63, 79. (b) Bal, B.; Buse, C. T.; Smith, K.; Heathcock, C. H. Ibid. 1983, 63, 89 .
 (8) Heathcock, C. H.; Young, S. D.; Hagen, J. P.; Pilli, R.; Badertscher, U. J. Org. Chem. 1985, 50, 2095.
 (9) White, C. T.; Heathcock, C. H. J. Org. Chem. 1981, 46, 191.
 (10) (a) Collum, D. B.; McDonald, J. H.; Still, W. C. J. Am. Chem. Soc. 1980, 102, 2118. (b) Dauben, W. G.; Saugier, R. K.; Fleischhauer, I. J. Org. Chem. 1985, 50, 3767. (c) Heathcock, C. H.; Montgomery, S. H. Tetrahedron Lett. 1983, 24, 4637. (d) Brooks, D. W.; Kellogg, R. P. Tetrahedron Lett. 1982, 23, 4991. (e) Heathcock, C. H.; Finkelstein, B. L. J. Chem. Soc., Chem. Commun. 1983, 919. (f) Heathcock, C. H. Finkelstein, B. L.; Jarvi, E. T.; Radel, P. A.; Hadley, C. R. J. Org. Chem. 1988, 53, 1922. (g) Heathcock, C. H.; Jarvi, E. T. Tetrahedron Lett. 1982, 23, 2825. (h) Heathcock, C. H.; Radel, P. A. J. Org. Chem. 1986, 51, 4322.

[^2]: (11) (a) Seebach, D.; Ertas, M.; Locher, R.; Schweizer, W. B. Helv. Chim. Acta 1985, 68, 264. (b) Ertas, M.; Seebach, D. Ibid. 1985, 68, 961
 (12) Heathcock, C. H.; Davidsen, S. K.; Hug, K. T.; Flippin, L. A. J. Org. Chem. 1986, 51, 3027.
 (13) Prenyl chloride is obtained as a $5: 1$ mixture of 4 and 5 by reaction of 3 -methylbut-1-en-3-ol with concentrated HCl: Mayer, H.; Klein, H.; Sippel, H. Chem. Ber. 1983, 116, 3624.
 (14) For a precedent for this reaction, see: Sato, F.; Inoue, M.; Oguro, K.; Sato, M. Tetrahedron Lett. 1979, 4303.

[^3]: (15) Lewis acid mediated additions of silyl enol ethers to α-chiral aldehydes have previously been shown to give enhanced Cram/anti-Cram ratios: Heathcock, C. H.; Flippin, L. A. J. Am. Chem. Soc. 1983, 105, 1667.
 (16) Mori, I.; Bartlett, P. A.; Heathcock, C. H. J. Am. Chem. Soc. 1987, 109, 7199.
 (17) The oxidative cleavage of homoallylic alcohols by lead tetraacetate is well-precedented. (a) Braude, E. A.; Wheeler, O. H. J. Chem. Soc. 1955, 320. (b) Amorosa, M.; Caglioti, L.; Cainelli, G.; Immer, H.; Keller, J.; Wehrli, H.; Mihaiolovic, M. L.; Schaffner, K.; Arigoni, D.; Jeger O. Helv. Chim. Acta 1962, 45, 2674. (c) Heusler, D.; Kalvoda, J. Angew. Chem., Int. Ed. Engl. 164, 525 . For reviews, see: (d) Criegee, R. In Oxidation in Organic Chemistry, Part A; Academic Press: New York, 1965; Chapter V. (e) Rubottom, G. M. In Oxidation in Organic Chem istry, Part D; Academic Press: New York, 1982; Chapter I.

[^4]: (18) Mori, I.; Bartlett, P. A.; Heathcock, C. H., manuscript in prepa-

[^5]: (19) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923. (20) Matsumoto, T.; Hosoda, K.; Mori, K.; Fukui, K. Bull. Chem. Soc. Jpn. 1972, 45, 3156.
 (21) Buse, C. T.; Heathcock, C. H. Tetrahedron Lett. 1978, 1685.

